Karen Brewer, Professor of Chemistry

B.S., Ohio Northern University; Ph.D., Massachusetts Institute of Technology
Full Profile
Areas of expertise: synthesis and luminescence properties of rare earth (lanthanide) sol-gel derived materials

Karen Brewer's main research project is in collaboration with Hamilton Physics Professor Ann Silversmith and Professor Dan Boye of Davidson College. In Brewer's chemistry lab, students create glass that contains rare earth ions that have interesting spectroscopic properties. The glass is then probed in the laser spectroscopy labs in physics. Her research has been funded by the Research Corporation and the Petroleum Research Fund of the American Chemical Society. She came to Hamilton College in 1989 and teaches undergraduate courses in advanced and intermediate inorganic chemistry and general chemistry. Brewer earned a doctorate from Massachusetts Institute of Technology.

Myriam Cotten, Associate Professor of Chemistry

B.S., Université Pierre et Marie Curie; M.S., Ecole Supérieure de Chimie Organique et Minérale; Ph.D., Florida State University
Full Profile
Areas of expertise: use and development of biophysical and biochemical techniques such as magnetic resonance to study the structure, function, and mode of action of membrane-interacting peptides and proteins; current research focuses on antimicrobial and anticancer peptides

Myriam Cotten’s research interests include the use and development of biophysical and biochemical techniques such as magnetic resonance to study the structure, function and mode of action of membrane-interacting peptides and proteins. Her current research focuses on antimicrobial and anticancer peptides. Her long-term goal is to identify common principles that will facilitate the design of pharmaceuticals with enhanced antibacterial and anticancer activity and low toxicity for mammalian cells. The Dreyfus Foundation, National Science Foundation and Research Corporation have supported Cotten’s research. She earned a doctorate in chemistry from Florida State University.

Farah Dawood, Assistant Professor of Chemistry

B.A. Concordia College; Ph.D. Pennsylvania State University
Full Profile
Areas of expertise: physical chemistry, nanochemistry, materials chemistry, lithography

Farah Dawood is developing the experimental physical chemistry curriculum. She is initiating a research program grounded in nanolithography for designing optically active materials for manipulating light and sensors for detecting low concentrations of biomolecules. During her postdoctoral research at The Center for Integrated Nanotechnologies at Los Alamos National Laboratory, Dawood developed new lithographic methods for spatially organizing soft materials, in particular for enabling applications in next-generation quantum computing. Before that, Dawood was a postdoctoral researcher in physical chemistry at the University of Maryland, where she studied new nanofabrication methods using ultrafast lasers to design biomolecular scaffolds and sensors. Dawood earned her doctorate in materials chemistry at Penn State, focusing on colloidal routes for the predictable and controllable synthesis of metastable nanoparticles using crystal structures as templates. She earned a bachelor’s degree in chemistry from Concordia College, Moorhead.

Max Majireck, Assistant Professor of Chemistry

B.S., Grove City College; Ph.D., Pennsylvania State University
Full Profile
Areas of expertise: organic chemistry, natural products, medicinal chemistry and chemical biology

Max Majireck completed his postdoctoral research in chemical biology at Harvard University and the Broad Institute of MIT and Harvard, designing small molecules to study disease biology, particularly cancer. He was selected for a fellowship from the Leukemia & Lymphoma Society. At Hamilton, he combined his passion for teaching, mentoring and research by designing a new course to highlight the role of organic synthesis in human health. He's also designing a research program that investigates new chemical transformations to produce tool compounds for studying neurological disorders. Majireck earned his doctorate in organic chemistry from Penn State. 

Ian Rosenstein, Chair, Associate Professor of Chemistry

B.S., Massachusetts Institute of Technology; Ph.D., Duke University
Full Profile
Areas of expertise: organic chemistry, free radical reactions, reaction stereochemistry and development of new synthetic methodology

Ian Rosenstein's research focuses on the development on new methods for the synthesis of organic compounds using free radicals as key reactive intermediates. Much of Rosenstein's work has explored the use of chiral auxiliaries for controlling the stereochemistry of radical addition reactions. His current work is aimed at developing methodology that combines radical processes with metal-catalyzed coupling reactions to construct multiple carbon-carbon bonds in a single reaction sequence. Rosenstein joined the Hamilton faculty in 1994 after completing his doctorate and a year of postdoctoral study at Duke University.

Sarah Rosenstein, Visiting Assistant Professor of Chemistry

B.S., Wellesley College; Ph.D., Duke University

At Duke University, where she earned her doctorate in biochemistry, Sarah Rosenstein began research in the emerging field of RNA enzymes (ribozymes), determining the secondary and tertiary structural features required for self-cleavage of the Hepatitis Delta Virus genomic and anti-genomic RNA. Rosenstein has published in the journals Biochemistry and Nucleic Acids Research and has two U.S. patents. She has been an adjunct professor at Utica College for more than 20 years. There she developed coursework in environmental chemistry focusing on climate change and energy, chemical body burdens, endocrine disrupting chemicals and obesogens. Rosenstein teaches organic chemistry laboratories, as well as biochemistry lecture and laboratory, and research methods. She earned a bachelor’s degree in biological chemistry from Wellesley College.

Adam Van Wynsberghe, Associate Professor of Chemistry

B.A., Ohio Wesleyan University; Ph.D., University of Wisconsin-Madison
Full Profile
Areas of expertise: physical chemistry, biophysical chemistry and theoretical chemistry

Adam W. Van Wynsberghe joined Hamilton College in 2009 after two years at the University of California, San Diego, where he was a National Institutes of Health National Research Service Award postdoctoral fellow. He was a National Science Foundation predoctoral fellow at the University of Wisconsin - Madison, where he completed his doctorate in biophysics. Van Wynsberghe's research interests center around the use of theoretical and computational techniques to study biophysical problems from both basic and applied perspectives. Currently, he is investigating the nature of protein-protein and protein-ligand interactions, the origins and roles of conformational changes and dynamics in biomolecular systems and the dynamical aspects of enzyme catalysis.

SueAnn Senior, Lecturer and Laboratory Supervisor


Robin Kinnel, the Silas D. Childs Professor of Chemistry Emeritus and Lecturer in Chemistry

A.B., Harvard University; Ph.D., Massachusetts Institute of Technology
Areas of expertise: isolation and structure elucidation of natural products and natural products chemistry; NMR spectroscopy; separations technology; liquid chromatography/ESI mass spectrometry; organic synthesis, peptide and peptidomimetic chemistry; medium ring chemistry; chemical defense and antimicrobial compounds

Robin Kinnel, an organic chemist, pursued research in physical organic chemistry but became captivated by the chemistry of natural products, particularly from the marine environment. His fascination with the marine environment led to work at the University of Hawaii and publications about naturally occurring compounds with unusual structures and promising biological activity. Most recently he has studied the structures of small peptides in solution, carrying out syntheses of compounds isolated from cyanobacteria, and attempting to synthesize peptidomimetics useful against breast cancer. He has a doctorate in chemistry from MIT.